library(gapminder)
library(tidyverse)
## ── Attaching packages ────────────────────────────────────────────────────────────── tidyverse 1.3.0 ──
## ✔ ggplot2 3.3.3 ✔ purrr 0.3.3
## ✔ tibble 2.1.3 ✔ dplyr 1.0.4
## ✔ tidyr 1.0.0 ✔ stringr 1.4.0
## ✔ readr 1.3.1 ✔ forcats 0.4.0
## Warning: package 'ggplot2' was built under R version 3.6.2
## Warning: package 'dplyr' was built under R version 3.6.2
## ── Conflicts ───────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
gapminder_2007 <- gapminder %>% filter(year == 2007)
gapminder_2007
## # A tibble: 142 x 6
## country continent year lifeExp pop gdpPercap
## <fct> <fct> <int> <dbl> <int> <dbl>
## 1 Afghanistan Asia 2007 43.8 31889923 975.
## 2 Albania Europe 2007 76.4 3600523 5937.
## 3 Algeria Africa 2007 72.3 33333216 6223.
## 4 Angola Africa 2007 42.7 12420476 4797.
## 5 Argentina Americas 2007 75.3 40301927 12779.
## 6 Australia Oceania 2007 81.2 20434176 34435.
## 7 Austria Europe 2007 79.8 8199783 36126.
## 8 Bahrain Asia 2007 75.6 708573 29796.
## 9 Bangladesh Asia 2007 64.1 150448339 1391.
## 10 Belgium Europe 2007 79.4 10392226 33693.
## # … with 132 more rows
ggplot(data = gapminder) +
geom_point(mapping = aes(x= gdpPercap,
y = lifeExp))

ggplot(data = gapminder, mapping = aes(x=gdpPercap, y = lifeExp)) +
geom_point()

gapminder %>%
ggplot(aes(x= gdpPercap, y = lifeExp)) +
geom_point()

ggplot(data = gapminder_2007,
mapping = aes(x = gdpPercap,
y = lifeExp,
color=continent,
size=pop)) +
geom_point() +
scale_x_log10()

ggplot(data = gapminder_2007,
mapping = aes(x = gdpPercap,
y = lifeExp,
color=continent,
size=pop)) +
geom_point() +
scale_x_log10() +
scale_color_viridis_d()

ggplot(data = gapminder_2007,
mapping = aes(x = gdpPercap,
y = lifeExp,
color=continent,
size=pop)) +
geom_point() +
scale_x_log10() +
facet_wrap(vars(continent))

ggplot(data = gapminder_2007,
mapping = aes(x = gdpPercap,
y = lifeExp,
color=continent,
size=pop)) +
geom_point() +
scale_x_log10() +
labs(title = "Health and income are positively correlated",
subtitle = "2007 data",
x = "Income (GDP/capita",
y = "Health (life expectancy)",
color = "Continent",
size = "Population",
caption = "Source: The Gapminder Project")

ggplot(data = gapminder_2007,
mapping = aes(x = gdpPercap,
y = lifeExp,
color=continent,
size=pop)) +
geom_point() +
scale_x_log10() +
theme_dark()
